microbiology, molecular biology, biophysical chemistry, and physics. Moreover, the

discovery of structures termed microbial nanowires are capable of reducing metal and

transferring electrons to anodes, which are synthesized by Geobacter spp. and S. oneidensis

MR-1 strain and offer viable alternatives for researchers that are aiming for renewable

energy source technologies. In addition, the most suitable properties and functionalities

of microbial nanowires demonstrated can offer promising specific applications within

the areas of bioremediation of environmental contaminants, production of bioenergy and

nanomaterials, applications for sensing, biotherapeutics, and bioelectronics, among many

others. Thus, the studies on microbial nanowires can provide interesting research areas

that are likely to shape the future of several technology sectors.

References

1. W. Gopel, “Bioelectronics and nanotechnologies,” Biosensors and Bioelectronics, vol. 13, 1998,

pp. 723–728.

2. B. Nagel, H. Dellweg, L.M. Gierasch, “Glossary for chemists of terms used in biotechnology

(IUPAC recommendations 1992),” Pure and Applied Chemistry, vol. 64, no. 1, 1992, pp. 143–168.

3. S.K. Butti, G. Velvizhi, M.L.K. Sulonen, J.M. Haavisto, E.O. Koroglu, A.Y. Cetinkaya, S. Singh,

D. Arya, J.A. Annie Modestra, K.V. Krishna, A. Verma, B. Ozkaya, A.M. Lakaniemi, J.A.

Puhakka, S.V. Mohan, “Microbial electrochemical technologies with the perspective of har­

nessing bioenergy: Maneuvering towards upscaling,” Renewable and Sustainable Energy Reviews,

vol. 53, 2016, pp. 462–476.

4. Y.A. Gorby, S. Yanina, J.S. McLean, K.M. Rosso, D. Moyles, A. Dohnalkova, T.J. Beveridge,

I.S. Chang, B.H. Kim, K.S. Kim, D.E. Culley, S.R. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill,

L. Shi, D.A. Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K.H. Nealson,

J.K. Fredrickson, “Electrically conductive bacterial nanowires produced by Shewanella onei­

densis strain MR-1 and other microorganisms,” Proceedings of the National Academy of Sciences,

vol. 103, no. 30, 2006, pp. 11358–11363.

5. J.P. Duguid, I.W. Smith, G. Dempster, P.N. Edmunds, “Non-flagellar filamentous appen­

dages (‘fimbriæ’) and hæmagglutinating activity in bacterium coli,” J. Pathol., vol. 70, no. 2,

1955 pp. 335–348.

6. J.C. Ottow, “Ecology, physiology, and genetics of fimbriae and pili,” Annu. Rev. Microbiol.,

vol. 29, no. 1, 1975, pp. 79–108.

7. Brinton, “Non-flagellar appendage of bacteria,” Nature, vol. 183, 1959. pp. 782–786.

8. R. Yanagawa, K. Otsuki, T. Tokui, “Electron microscopy of fine structure of corynebacterium

renale with special reference to pili,” The Graduate School of Veterinary Medicine, vol. 16, no. 1,

1968, pp. 31–37.

9. R. Fronzes, H. Remaut, G. Waksman, “Architectures and biogenesis of non-flagellar protein

appendages in gram-negative bacteria,” EMBO J, vol. 27, no. 17, 2008, pp. 2271–2280.

10. F.G. Sauer, H. Remaut, S.J. Hultgren, G. Waksman, “Fiber assembly by the chaperone–usher

pathway,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1694, no. 1–3,

2004, pp. 259–267.

11. S.P. Nuccio, A.J. Bäumler, “Evolution of the chaperone/usher assembly pathway: Fimbrial

classification goes greek,” Microbiol Mol Biol Rev, vol. 71, no. 4, 2007, pp. 551–575.

12. A. Olsén, A. Jonsson, S. Normark, “Fibronection binding mediated a novel class of surface

organelles of Escherichia coli,” Nature, vol. 338, 1989, pp. 652–655.

13. C.L. Tsai, B.J. Burkinshaw, N.C.J. Strynadka, J.A. Tainer, “The salmonella type III secretion

system virulence effector forms a new Hexameric chaperone assembly for export of effector/

chaperone complexes,” J Bacteriol, vol. 197, no. 4, 2015, pp. 672–675.

Microbial Nanowires

183